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Abstract

A gcncralization of the procedure to study shapes oald stability of algebraic nuclear modcls

introduced by Gilmore is presented. Onc calculates thc expectation value of the hamiltonian

with rcspect to the cohcrcnt statcs of thc algebraic structl_rc of thc system. Then equilibrium

configurations of the rcsulting energy surface, which depends ill gcncral on state variables

and a set of paramctcrs, arc cla._sificd through the Cat&strophc theory. For onc and two-

body interactions in the hamiltonian of thc interacting boson model-l, the critical points

are organized through the Cusp catastrophe. As all example, wc apply this Scparatrix to

describe the encrgy surfaces mssociatcd to thc Rutcnium and Samm'ium isotopes.

1 Introduction

The geometry of algebraic nuclear models can be studied by means of the time-dependent varia-

tional principle [1], [2]. This formalism providcs us with a classical limit of the nuclcar model, in

particular we are mainly concerned with the static propertics of the hamiltonian function (energy

surface) associated to the considered algebraic nuclear model. In general these hamiltonian func-

tions dcpend on state variables and a sct of parameters, then thc appropriate mathematical tool

to determine the most general bchaviour of thcir equilibrium configurations is the Catastrophe

formalism [3].

A connection between the intcracting boson model-l(IBM-1) [4] and the geometrical approach

of Bohr-Mottelson [5] was done by expressing the IBM-1 hamiltonian in terms of shape variables.

This can be achieved by means of the intrinsic boson states defined by [6] or by the corresponding

cohcrcnt states [2]. Analysis of shape and phase transitions in this modcl have been donc by [7],

[8]. In this work wc apply the procedure introduced in Ref. [2] to the interacting boson model,

but for the gcncral hamiltonian of one and two-body central interactions involving s and d bosons

[4] and determining its associated Scparatrix. Wc show that the equilibrium configurations can be
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classified through the Cusp catastrophe, this means that two parameters are enough to describe

the most general energy surface. Therefore this analysis generalize those presented previously

[4], in which only transitions between pairs of exact SU(5), 0(6) and SU(3) symmetries are

considered. In the last decade, effective hamiltonians of the IBM-1 have been used to describe

energy spectra and transition probabilities of chains of isotopes and isotones [9], [10]. In particular,

the effective hamiltonians for Ru [11] and Sm [12] isotopes were determined, i.e., the best choice of

the parameters of the general IBM-1 hamiltonima that reproduced the corresponding experimental

data. Using these effective hamiltonians we construct their energy surfaces and show that their

critical points follow a curve in the parameters space organized by the Cusp Separatrix. This let

us to know: i) How many equilibrium configurations yield the system and ii) If the behaviour of

the model around the critical points may or may not be approximated by an harmonic oscillator.

In the Second Section we review how the energy surfaces can be determined considering a

hamiltonian constructed iu terms of the generators of a Heisenberg-Weyl algebra. In the Third

Section a brief summary of the IBM-1 is presented. Ill the Fourth Section, an analysis of the

shape and stability of the most general energy surfaces of the IBM-1 is made, also the curves

associated to the Ru and Sm isotopes are plotted in the parameters space. Finally some remarks

arc indicated in the last section.

2 Energy Surfaces of Algebraic Models

The energy surfaces (ES) of algebraic mo(lels call be determined by means of the coherent states

of the associated algebraic structure of the ha,niltonian. As an examl)lc, a hamiltonian written in

terms of the generators of a Hciscnberg-Wcyl algebra is considered, i.e.,

H=cob tb+c2 (bt2+b 2)+el (b t+b), (1)

where the operators bt and b satisfy standard creation and annihilation commutation relations.

Although this hamiltonian can bc solved analytically by 'means of a Bogoliubov transformation,

we use it to illustrate the procedure to construct the coherent states and the ES of an algebraic

model.

The coherent state is defined by the action of the raising generator on the vacuum state [1]

I_>--exp(_"b')lO>. (2)

The Baker-Campbell-Hausdorff formulas can be used to calculate the overlap of two coherent

states and the coherent state representation of the creation and annihilation boson operators

<_'1_)= exp(.'.'), (3)

0

<_1b - _ (_1,
Then the energy surface is given by

(_1bt - _<(_I • (4)

E(_,)- lira (_'lH[cr) (5)
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Substituting the expressions (1), (3) and (4) into the previous one, one gets the result

Z(p) = (co + 2c2)p 2 + 2clp,

where the reality condition _ = a* = p was also used.

(6)

3 The Interacting Boson Model

In 1975 this model [4] was introduced to describe collective properties of even-even nuclei far from

closed shells through the interactions between two kinds of bosons, one with angular momentum

L = 0 (the s-boson) and another with angular momentum L = 2 (the d-boson). The six possible

boson states give rise to a U(6) group structure. The bosons represent pairs of fermions, the

s-boson reflects the strong pairing attraction of identical nucleons whereas the d-boson is a result

of the weaker J = 2 + attraction [4]. Therefore nuclei arc pictured as systems of s and d bosons,

whose number is equal to half the number of the valence nucleons, the core being considered inert.

When a shell is more than half full, hole-pairs are counted instead of particle-pairs.

The most general one and two body hamiltonian that conserves the total number of bosons is

HIBM = ¢,N,+¢dN,,+ _ 2 v/_ +1 [[d t xd t]tLlx[dxd]tt']][°]
L=0,2,4

V0

+ -_ ([[d t xd tl[2]xd][°]s+s t [d t x[dxd][2] 1[°])

V2

+ -2- ([[d t × d t] [o] s2 + st2 [d × d] [o])

+ V_Uo s t s[d t x d] [o1+ u2 S t2 S2 , (7)

where the sets of boson operators s, s t and d_,, dj, satisfy the following, different from zero, com-
mutators

Now, we construct the coherent state of a six dimensional harmonic oscillator, following the

procedure indicated in the previous section. However in this case the associated group is compact

and then we restrict the exponential to only one term of the Taylor series expansion,

IN, 5)= AN(S t + __, (9)

where AN is the normalization constant. Evaluating the corresponding Eq.(5) one aa'rives to the

formulae for the energy surface of the model [8], i.e.,

f12 N (N - 1) f14 fla f12
E(fl, "7) = N e (1 + f12) + (1 + fl2)2 (al + a2 cos3"), + a3 + u2) , (10)

where it was used that the laboratory variables a, can be expressed in terms of two intrinsic

parameters fl and 7 plus three Euler angles. Besides as the energy surface is a rotational invariant

147



all tile dependence ill tile Euler angles disappear. The parameters al, a2, a3, and ¢ of the Eq.(10)

are combinations of those that appear in the IBM-1 hamiltonian (7)

Co c2 9c4

a, = y6+T+-_, (ii)

a2 = -- Vo , (12)

2

a3 - x/_v2 + Uo , (13)

e = ed--e_. (14)

4 Shapes and Stability of Energy Surfaces

The energy surfaces define flmctions of state variables and a set of parameters, and the Catastrophe

theory is used to analize their equilibrium configurations. This formalism let us organize all the

possible shapes of the ES into well defined separated regions of the parameters space.

To illustrate how this is done, wc consider the potential energy surfaces (PES) of the simplest

version of the Generalized Collective Model [5], i.e.,

V(fl, 7; C2, Ca) = f14 _ C3 flacos37 + C2 f12 . (15)

The equilibrium or critical points arc determined by solving the equation VV(fl,7) = 0. The

results arc given by (0, 0) and (rio, %), with

Zo= + - 32c 
8 , 3'0= 0, r/3 . (16)

The set of degenerated critical points defines a locus in the parameters space which is called the

Separatvix. This can bc obtained through the dctcrnfinant of the Hessian matrix or by other

procedures, in this case it is immediate that the critical points are double degenerated if the

parameters satisfy the expressions

9C 2-32C2 = O, (17)

c2=o, c3 # o. (is)

For the expression (17) the critical points arc localized in fl0 = 3Ca/8 while for (18) in fl0 = 0.

Besides, it is straight to prove that if C2 = 0 and C3 = 0 the critical point is triple degenerated

and localized at fl0 = 0. The Scparatrix of the system is shown in Fig.1. It divides the space in

regions each characterizing a typical shal)e yield by the model. By means of the transformation

fl = y + C3/4 the Separatrix is taken to the canonical form of the Cusp catastrophe.

Now wc study the equilibrium configurations of the energy surface a_ssociatcd to the IBM-l,

which is given in Eq.(10). Then we calculate the critical points by taking the derivatives with

respect to/3 and 3' variables. It is straightforward to scc that the critical points correspond only

to 3' = 0 (prolate case) or 3' = 7r/3 (oblate case). Therefore we can restrict to the prolate case,
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without losing generality. Tile energy surface (10), with 7 = 0, can be re-written in terms of the

following paramctcrs

2u2(N - 1) - (N - 1)as - E

rl = -2al(g - 1) - (g - 1)o.3 + e '

2a2(g - 1)

r2 = 2al(g -1) - (g -1)a3 + e '

(19)

(20)

and it takes the form

1

E(/3) - (1 +/32/2 {/34 + ,.1/32(/32 + 2) - ,./33} , (21)

whcrc E(/3) = E(/3,7 = O)/N - e, - u2(N - 1). Onc has to noticc that the oblate casc can be

rcgaincd by interchanging 7"2 by -7"2 or cquivalcntly a2 by --a2.
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FIG. 1. Scparatrix for the Bohr Mottclson Hamiltonian

To find the cxtrcma in fl of thc Eq.(21) ouc needs to solve the equation

fl (,. /33 + 4/32_ 3,'2/3 + 4,'1) = 0 . (22)

From this cxprcssion, one determines thc locus in the paramctcrs space (r2, rl) of degenc.mtcd

critical points. Then the Separatriz of the modcl is defined by thc curves

,., = 4- (16+ 9r._) 3/2 32
54r22 27r2 1 , (23)

"l = O. (24)

This Scparatrix is sho_n in Fig.2 and it corresponds to the Cusp catastrophfi although it does not

has the canonical form.
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FIG. 2. Scparatrix for the IBM-1 Hamiltonian

Now we applied the results to find the shapes and stability of the Ru and Sm isotopes. For

the Ru case, one has the number of valence protons pairs, N, = 3. As we consider isotopes with a

mass number varying from A = 98- 110, the corresponding number of neutron bosons runs from

N,, = 2 to Nv = 8. Thus the size of the space in the IBM-1 is determined by the total number

of bosons, which is the sum of the numbcrs of proton and neutron bosons. In the Sm case, one

has the number of proton bosons, N_ = 6, and as wc take into account A = 148 - 160, the

number of neutron bosons runs from N,, = 2 to N_ = 8. An analysis of their energy spectra and

electromagnetic transitions using the hamiltonim_ (7) is ma_le in [11] and [12]. For both isotope

chains, the parameters used are presented in the first eight columns of Table I. Substituting these

parameters into the equations (11) to (13) we get the values of al , a2 and a3. These are given in

the last three columns of Table I, by means of which one can easily construct the corresponding

energy surface of each nucleus.

To find the region of the Separatrix, Fig. 2, where the diffcrcnt isotopcs are localized one

calculates the parameters rl and r2 through the cquations (19) and (20), as functions of the total

number of bosons. For the Ru, one gets the expressions

990.2 + 146.2(N- 1)

rl = 990.2+40.2(N-1) ' "2=0, (25)

while for the Sm isotopes the paramctcrs are

2171.2 + 258.3 (g - 1) 86 (N - 1)

rl = 2171.2_t. 151.2(N_ 1 ) , r2=2175_151(N_l ) . (26)

The localization of the I_oints (25) and (26) are shown in Fig. 3 and Fig 4, r_pectively.

TABLE I. Parameters, in KeV units

CO C2 C4

Ru 990.2 -185.4 -77.4 -.0.4

Sm 2170.6 -613.7 -318.8 -377.6

used to describe the Ru and Sm isoto )e chains

u0 u2 v0 v2 al a2 a3
-53.0 23.3 0 -52.1 -29.7 0 -52.1

227.4 0.4 89.9 -33.0 -204.1 -43.0 -256.9
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FIG. 3. Plot of tim points (25) associated to thc Ru isotopes chain.

ml ............................. t ......................... m ................... , ................

_2 .................... - .............

m 7 ' •

-10 -5 0 5 10

r2

FIG. 4. Plot of the points (26) associated to the Sm isotopes chain.

5 Conclusions

For tile Bohr-Mottclson model the yielded shapes and equilibrium configurations arc classified by

the Scparatrix of Fig.1. One can identify four regions: (i) Above the parabola, the PES have one

minimum at fl = O. ii) Between the l)arabola and the C2 axis, in the PES appear additionally

a second minumum at fl :fi 0. iii) Below the C3 axis the PES have two mimima at/3 _ 0 and
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tile maximum occurs at fl = 0. The PES around these critical points can be approximated by

an harmonic oscillator, iv) On the locus of points that define the Separatriz, we have shape

transitions and in the vccinity of the critical points (16) the PES cannot be approximated by

quadratic functions. It is important to remark that the PES have a mirror symmetry along the

Ca axis, which physically represents transitions fi'om prolate to oblate shapes.

For the IBM-1 hamiltonian one gets (see Fig. 2): (i) For positive values of rl one has two

regions, above the curve the ES present one minimmn at fl = 0 and below the curve they have

a second minumum at fl _ 0. ii) For negative values of rl one has again two regions, above the

curve the ES are built with two minima at /_ _ 0 and a maxinmm at /_ = 0 and below of it,

the ES have one mimimum point at /_ _ 0 and a maximum at _ = 0. For the critical points

mentioned above the energy surfaces can be approximated by an harmonic oscillator, iii) Finally

on the Separatrix, thcrc are shape transitions, and in the vccinity of their critical points the ES

cannot be approximated by quadratic functions. It is important to remark that these ES have

also a mirror symmetry along the r2 axis, reprcscnting transitions from prolate to oblatc shapes.
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